Как уменьшить напряжение на зарядном устройстве

Как переделать зарядное от сотового телефона на другое напряжение

Сейчас уже все производители сотовых телефонов договорились и все, что есть в магазинах, заряжается через USB-разъем. Это очень хорошо, потому что зарядные устройства стали универсальными. В принципе, зарядное устройство для сотового телефона таковым не является.

Это только импульсный источник постоянного тока напряжением 5V, а собственно зарядное устройство, то есть, схема следящая за зарядом аккумулятора, и обеспечивающая его заряд, находится в самом сотовом телефоне. Но, суть не в этом, а в том, что эти «зарядные устройства» сейчас продаются повсеместно и стоят уже так дешево, что вопрос с ремонтом отпадает как-то сам собой.

Например, в магазине «зарядка» стоит от 200 рублей, а на известном Алиекспресс есть предложения и от 60 рублей (с учетом доставки).

Принципиальная схема

Схема типовой китайской зарядки, срисованная с платы, показана на рис. 1. Может быть и вариант с перестановкой диодов VD1, VD3 и стабилитрона VD4 на отрицательную цепь — рис.2.

А у более «продвинутых» вариантов могут быть выпрямительные мосты на входе и выходе. Могут быть и отличия в номиналах деталей. Кстати, нумерация на схемах дана произвольно. Но сути дела это не меняет.

Рис. 1. Типовая схема китайского сетевого зарядного устройства для сотового телефона.

Несмотря на простоту, это все же неплохой импульсный блок питания, и даже стабилизированный, который вполне сгодится и для питания чего-то другого, кроме зарядного устройства сотового телефона.

Рис. 2. Схема сетевого зарядного устройства для сотового телефона с измененным положением диода и стабилитрона.

Схема сделана на основе высоковольтного блокинг-генератора, широта импульсов генерации которого регулируется при помощи оптопары, светодиод которой получает напряжение от вторичного выпрямителя. Оптопара понижает напряжение смещения на базе ключевого транзистора VТ1, которое задается резисторами R1 и R2.

Нагрузкой транзистора VТ1 служит первичная обмотка трансформатора Т1. Вторичной, понижающей, является обмотка 2, с которой снимается выходное напряжение. Еще есть обмотка 3, она служит и для создания положительной обратной связи для генерации, и как для источника отрицательного напряжения, который выполнен на диоде VD2 и конденсаторе С3.

Этот источник отрицательного напряжения нужен для снижения напряжения на базе транзистора VТ1, когда оптопара U1 открывается. Элементом стабилизации, определяющим выходное напряжение, является стабилитрон VD4.

Его напряжение стабилизации таково, что в сумме с прямым напряжением ИК-светодиода оптопары U1 дает именно те самые необходимые 5V, которые и требуются. Как только напряжение на С4 превышает 5V, стабилитрон VD4 открывается и через него проходит ток на светодиод оптопары.

И так, работа устройства вопросов не вызывает. Но что делать, если мне нужно не 5V, а, например, 9V или даже 12V? Вопрос такой возник вместе с желанием организовать сетевой блок питания для мультиметра. Как известно, популярные в радиолюбительских кругах, мультиметры питаются от «Кроны», — компактной батареи напряжением 9V.

И в «походнополевых» условиях это вполне удобно, но вот в домашних или лабораторных хотелось бы питания от электросети. По схеме, «зарядка» от сотового телефона в принципе подходит, в ней есть трансформатор, и вторичная цепь не контактирует с электросетью. Проблема только в напряжении питания, — «зарядка» выдает 5V, а мультиметру нужно 9V.

На самом деле, проблема с увеличением выходного напряжения решается очень просто. Нужно, всего лишь, заменить стабилитрон VD4. Чтобы получить напряжение, подходящее для питания мультиметра, нужно поставить стабилитрон на стандартное напряжение 7,5V или 8,2V. При этом, выходное напряжение будет, в первом случае, около 8,6V, а во втором около 9,ЗV, что, и то и другое, вполне годится для мультиметра. Стабилитрон, например, 1N4737 (это на 7,5V) или 1N4738 (это на 8,2V).

Впрочем, можно и другой маломощный стабилитрон на данное напряжение.

Испытания показали хорошую работу мультиметра при питании от такого источника питания. Кроме того, был попробован и старый карманный радиоприемник с питанием от «Кроны», -работал, только помехи от блока питания слегка мешали. Напряжением в 9V дело совсем не ограничивается.

Рис. 3. Узел регулировки напряжения для переделки китайского зарядного устройства.

Хотите 12V? — Не проблема! Ставим стабилитрон на 11V, например, 1N4741. Только нужно конденсатор С4 заменить более высоковольтным, хотя бы на 16V. Можно получить и еще большее напряжение. Если вообще удалить стабилитрон будет постоянное напряжение около 20V, но оно будет не стабилизированное.

Можно даже сделать регулируемый блок питания, если стабилитрон заменить регулируемым стабилитроном, таким как TL431 (рис. 3). Выходное напряжение можно регулировать, в этом случае, переменным резистором R4.

Как уменьшить напряжение на зарядном устройстве

Есть простой способ понизить до 3 В?

Например резистор. И если да, то какого сопротивления?

Dachnik_Miha

Postoronnim V

ЗЫ. Да, забыл сказать..
Не не делайте так, как предложил Dachnik_Miha.
Та схема — это стабилизатор тока, а не напряжения.
Со всеми вытекающими последствиями повышения напряжения на конечной нагрузке, как и в случае с просто резистором.

Марку подскажите пжлста!

Postoronnim V

Вопрос по току потребителя меня всегда напрягает, т.к. вольты изменять легко (контакты кинул на выводы и фсё), то ток, надо замерять разорвав сеть (последовательно), а это надо что-то городить.

И наверно проще сказать что за потребитель.
Это электродвигатель.
Самый простой.
В сети он, выключатель, две батарейки.

И причём — движок совсем дубовый и батареи (аккумуляторы) сжирает за 15-20 минут. Очевидно, что это не самый экономичный потребитель.
А мне кажется, что такой режим для аккумов — не самый простой.
Вот я и хочу сделать его на сетевом питании.

Ток потребления я замерю и сообщу.

В Питере много магазинов с электроникой и электрикой.
Наверняка, если будет названо два-три типа диодов (если остановились на этом варианте) то в одном из питерских магазинов я смогу найти нужный тип.

Но сначала я определю ток.

Сообщу, и тогда может будет проще и точнее подобрать нужное.

Postoronnim V

2. Включите тестер в таком режиме последовательно с двигателем и узнаете реальный ток потребления.

3. Только при этом двигатель должен быть нагружен, т.к. в холостом режиме ток завсегда ниже, чем под рабочей нагрузкой на двигатель.

4. Если в распоряжении только один вольтметр, то включите последовательно с двигателем резистор сопротивлением 1 ом и напряжение на этом резисторе будет примерно численно равно току потребления .
Вместо резистора можно взять отрезок тонкой проволоки сопротивлением 1 ом. правда для этого понадобится ещё и омметр.

5. К стати, на зарядниках для мобильника обычно пишут допустимый ток нагрузки. Обычно это 0,5-1 А.

2. Именно так и планирую сделать. Просто для этого надо сделать «врезку».

3. Фактически движок не силовой, а крутит крыльчатку. Так что там нет особой разницы.

4. В распоряжении мультитестер.

А вставка в сеть резистора 1 Мом — дало такое падение напруги, что движок не тянул.
Сначала показало — 2 В, потом вообще 1 В.
Не тянет.

Зарядное устройство 12в аккумулятора своими руками

Это зарядное устройство я сделал для зарядки автомобильных аккумуляторов, выходное напряжение 14.5 вольт, максимальный ток заряда 6 А. Но им можно заряжать и другие аккумуляторы, например литий-ионные, так как выходное напряжение и выходной ток можно регулировать в широких пределах. Основные компоненты зарядного устройства были куплены на сайте АлиЭкспресс.

Вот эти компоненты:

Еще потребуется электролитический конденсатор 2200 мкФ на 50 В, трансформатор для зарядного устройства ТС-180-2 (как распаивать трансформатор ТС-180-2 посмотрите в этой статье), провода, сетевая вилка, предохранители, радиатор для диодного моста, крокодилы. Трансформатор можно использовать другой, мощностью не менее 150 Вт (для зарядного тока 6 А), вторичная обмотка должна быть рассчитана на ток 10 А и выдавать напряжение 15 – 20 вольт. Диодный мост можно набрать из отдельных диодов, рассчитанных на ток не менее 10А, например Д242А.

Провода в зарядном устройстве должны быть толстые и короткие. Диодный мост нужно закрепить на большой радиатор. Необходимо нарастить радиаторы DC-DC преобразователя, или использовать для охлаждения вентилятор.

Схема зарядного устройства для автомобильного аккумулятора

Сборка зарядного устройства

Подсоедините шнур с сетевой вилкой и предохранителем к первичной обмотке трансформатора ТС-180-2, установите диодный мост на радиатор, соедините диодный мост и вторичную обмотку трансформатора. Припаяйте конденсатор к плюсовому и минусовому выводам диодного моста.

Подключите трансформатор к сети 220 вольт и произведите замеры напряжений мультиметром. У меня получились такие результаты:

  1. Переменное напряжение на выводах вторичной обмотки 14.3 вольта (напряжение в сети 228 вольт).
  2. Постоянное напряжение после диодного моста и конденсатора 18.4 вольта (без нагрузки).

Руководствуясь схемой, соедините с диодным мостом DC-DC понижающий преобразователь и вольтамперметр.

Настройка выходного напряжения и зарядного тока

На плате DC-DC преобразователя установлены два подстроечных резистора, один позволяет установить максимальное выходное напряжение, другим можно выставить максимальный зарядный ток.

Включите зарядное устройство в сеть (к выходным проводам ничего не подсоединено), индикатор будет показывать напряжение на выходе устройства, и ток равный нулю. Потенциометром напряжения установите на выходе 5 вольт. Замкните между собой выходные провода, потенциометром тока установите ток короткого замыкания 6 А. Затем устраните короткое замыкание, разъединив выходные провода и потенциометром напряжения, установите на выходе 14.5 вольт.

Защита от переполюсовки

Данное зарядное устройство не боится короткого замыкания на выходе, но при переполюсовке может выйти из строя. Для защиты от переполюсовки, в разрыв плюсового провода идущего к аккумулятору можно установить мощный диод Шоттки. Такие диоды имеют малое падение напряжения при прямом включении. С такой защитой, если перепутать полярность при подключении аккумулятора, ток протекать не будет. Правда этот диод нужно будет установить на радиатор, так как через него при заряде будет протекать большой ток.

Подходящие диодные сборки применяются в компьютерных блоках питания. В такой сборке находятся два диода Шоттки с общим катодом, их нужно будет запараллелить. Для нашего зарядного устройства подойдут диоды с током не менее 15 А.

Нужно учитывать, что в таких сборках катод соединен с корпусом, поэтому эти диоды нужно устанавливать на радиатор через изолирующую прокладку.

Необходимо еще раз отрегулировать верхний предел напряжения, с учетом падения напряжения на диодах защиты. Для этого, потенциометром напряжения на плате DC-DC преобразователя нужно выставить 14.5 вольт измеряемых мультиметром непосредственно на выходных клеммах зарядного устройства.

Как заряжать аккумулятор

Протрите аккумулятор тряпицей смоченной в растворе соды, затем насухо. Выверните пробки и проконтролируйте уровень электролита, если необходимо, долейте дистиллированную воду. Пробки во время заряда должны быть вывернуты. Внутрь аккумулятора не должны попадать мусор и грязь. Помещение, в котором происходит заряд аккумулятора должно хорошо проветриваться.

Подключите аккумулятор к зарядному устройству и включите устройство в сеть. Во время заряда напряжение будет постепенно расти до 14.5 вольт, ток будет со временем уменьшаться. Аккумулятор можно условно считать заряженным, когда зарядный ток упадет до 0.6 – 0.7 А.

Доработка зарядного устройства сотового телефона

Автор предлагает варианты переделки зарядного устройства для сотового телефона в стабилизированный блок питания с регулируемым выходным напряжением или в источник стабильного тока, например, для зарядки аккумуляторов.

Одни из самых многочисленных электронных приборов, которые широко используются в быту, — несомненно, зарядные устройства (ЗУ) для сотовых телефонов. Некоторые из них можно доработать, улучшив параметры или расширив функциональные возможности. Например, превратить ЗУ в стабилизированный блок питания (БП) с регулируемым выходным напряжением или ЗУ со стабильным выходным током.

Это позволит питать от сети различную радиоаппаратуру или заряжать Li-Ion, Ni-Cd, Ni-MH аккумуляторы и батареи.

Значительная часть ЗУ для сотовых телефонов собрана на основе однотранзисторного ав-тогенераторного преобразователя напряжения. Один из вариантов схемы такого ЗУ на примере модели ACH-4E приведён на рис. 1. Там же показано, как превратить его в БП с регулируемым выходным напряжением. Обозначения штатных элементов приведены в соответствии с маркировкой на печатной плате.

Рис. 1. Один из вариантов схемы ЗУ на примере модели ACH-4E

Вновь введённые элементы и доработки выделены цветом.

В простых ЗУ, к которым относится дорабатываемое, зачастую применён однополупериодный выпрямитель сетевого напряжения, хотя на плате, в большинстве случаев, есть место для размещения диодного моста. Поэтому на первом этапе доработки установлены недостающие диоды, а резистор R1 с платы удалён (он установлен на месте диода D4) и припаян непосредственно к одному из штырей вилки XP1. Следует отметить, что встречаются ЗУ, в которых отсутствует и сглаживающий конденсатор С1. Если это так, необходимо установить конденсатор ёмкостью 2,2. 4,7 мкФ на номинальное напряжение не менее 400 В. Затем конденсатор С5 заменяют другим с большей ёмкостью. В таком варианте доработки ЗУ показаны на рис. 2.

Рис. 2. Доработанное ЗУ

В оригинальном ЗУ в выходном выпрямителе применён диод 1N4937, который заменён диодом Шотки 1N5818, что позволило увеличить выходное напряжение. После такой доработки сняты зависимости выходного напряжения от тока нагрузки, которые показаны синим цветом на рис. 3. Амплитуда пульсаций выходного напряжения с ростом тока нагрузки увеличивается с 50 до 300 мВ. При токе нагрузки более 300 мА появляются пульсации частотой 100 Гц.

Рис. 3. Зависимости выходного напряжения от тока нагрузки

Зависимости показывают, что стабильность выходного напряжения в ЗУ невысока. Обусловлено это тем, что его стабилизация осуществляется косвенно контролем напряжения на обмотке II, а именно, за счёт выпрямления импульсов на обмотке II и подачи закрывающего напряжения через стабилитрон ZD (напряжение стабилизации 5,6. 6,2 В) на базу транзистора Q1.

Для повышения стабильности выходного напряжения и возможности его регулировки на втором этапе доработки введена микросхема DA1 (параллельный стабилизатор напряжения). Управление преобразователем и обеспечение гальванической развязки реализованы с помощью транзисторной оптопары U1. Для подавления импульсных помех с частотой автогенератора дополнительно установлен фильтр L1C6C8. Резистор R9 удалён.

Выходное напряжение устанавливают переменным резистором R12. Когда напряжение на управляющем входе микросхемы DA1 (вывод1) превысит 2,5 В, ток через микросхему и, соответственно, через излучающий диод оптопары U1 резко возрастёт. Фототранзистор оптопары откроется, и на затвор базы транзистора Q1 поступит закрывающее напряжение с конденсатора С4. Это приведёт к тому, что скважность импульсов автогенератора уменьшится (или произойдёт срыв генерации). Выходное напряжение перестанет расти и начнёт плавно уменьшаться вследствие разрядки конденсаторов С5 и С8.

Когда напряжение на управляющем входе микросхемы станет менее 2,5 В ток через неё уменьшится и фототранзистор закроется. Скважность импульсов автогенератора возрастёт (или он начнёт работу), и выходное напряжение станет расти. Интервал выходного напряжения, который можно установить резистором R12, — 3,3. 6 В. Напряжения менее 3,3 В с учётом падения на излучающем диоде оптопары оказывается недостаточно для нормальной работы микросхемы. Зависимости выходного напряжения (для разных значений) от тока нагрузки доработанного устройства показаны красным цветом на рис. 3. Амплитуда пульсаций выходного напряжения — 20. 40 мВ.

Элементы (кроме переменного резистора) второго этапа доработки размещены на односторонней печатной плате из фольгированного стеклотекстолита толщиной 0,5. 1 мм, её чертёж показан на рис. 4. Монтаж — со стороны печатных проводников. Можно при-менить постоянные резисторы МЛТ, С2-23, Р1-4, конденсаторы С6, С7 — керамические, С5 — оксидный импортный, он снят с материнской платы персонального компьютера, С8 — оксидный низкопрофильный импортный. Поскольку выходное напряжение приходится устанавливать нечасто, применён не переменный резистор, а подстроечный PVC6A (POC6AP). Это позволило установить его на задней стенке корпуса ЗУ. Дроссель L1 намотан в один слой проводом ПЭВ-2 0,4 на цилиндрическом ферритовом магнитопроводе диаметром 5 мм и длиной 20 мм (от дросселя ИИП компьютера). Можно применить оптопары серии РС817 и аналогичные. Плату с деталями (рис. 5) вставляют в свободное место ЗУ (частично над конденсатором С1), соединения проводят отрезками изолированного провода. Для подстроечного резистора в задней стенке ЗУ делают отверстие соответствующих размеров, в которое его вклеивают. После проверки устройства резистор R12 снабжают шкалой (рис. 6).

Рис. 4. Печатная плата и элеменеты на ней

Рис. 5. Плата с деталями

Рис. 6. Шкала на ЗУ

Второй вариант доработки ЗУ — введение в него стабилизатора(или ограничителя) тока. Это позволит заряжать Li-Ion или Ni-Cd, Ni-MH аккумуляторы и батареи, содержащие до четырёх аккумуляторов. Схема такой доработки показана на рис. 7. С помощью переключателя можно выбрать режимы работы: блок питания или один из двух режимов «ЗУ» с ограничением тока. Конденсатор 220 мкФ (С5) заменён конденсатором ёмкостью 470 мкФ, но на большее напряжение, поскольку в режимах «ЗУ» без нагрузки выходное напряжение может увеличиться до 6. 8 В.

Рис. 7. Схема второго варианта доработки ЗУ

В режиме «БП» устройство работает в штатном режиме. При переходе в один из режимов «ЗУ» выходной ток протекает через резистор R10 (или R11). Когда напряжение на нём достигнет 1 В, часть тока начнёт ответвляться в излучающий диод оптопары U1, что приведёт к открыванию фототранзистора. Это приведёт к уменьшению выходного напряжения и стабилизации (ограничению) выходного тока Iвых. Его значение можно определить по приближённым формулам: Iвых = 1 /R10 или Iвых = 1/R11. Подборкой этих резисторов устанавливают желаемое значение тока. Полевой транзистор VT1 ограничивает ток через излучающий диод оптопары и тем самым защищает его от выхода из строя.

Большинство деталей размещают на односторонней печатной плате (рис. 8 и рис. 9) из фольгированного стеклотекстолита толщиной 0,5. 1 мм. Полевой транзистор должен быть с начальным током стока не менее 25 мА. Переключатель — любой малогабаритный движковый на одно или два направления и три положения, например SK23D29G, его размещают на задней стенке ЗУ и снабжают шкалой. Если применить переключатель на большее число положений, можно увеличить число номинальных значений тока и расширить тем самым номенклатуру заряжаемых аккумуляторов.

Рис. 8. Печатн ая плата и элеменеты на ней

Рис. 9. Плата с деталями

Поскольку зарядка осуществляется стабильным током, её следует проводить определённое время, которое зависит от типа и ёмкости заряжаемого аккумулятора или батареи.

Автор: И. Ннчаев, г. Москва

Мнения читателей
  • Alius / 22.07.2019 — 07:06
    1.Возможно ли поднять выходное напряжение до 12-15вольт простой доработкой(установкой стабилитрона на 12-15В, или TL431. )? 2.Стабилитрон удалять надо из схемы(рис.1, рис.7) при описанной доработке. ?(на схеме просто это не ясно. ) 3. Благодарю, за ответ заранее; и автора!
  • анатолий / 23.12.2017 — 19:22
    очень полезная информация.дано подробное описание проводимой доработки,понятное любому «чайнику».Спасибо.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:

Автомобильное зарядное устройство

Схема устройства

Все автолюбители попадали в такую неприятную ситуацию. Есть два выхода: завести машину с заряженного аккумулятора с соседской машины (если сосед не против), на жаргоне автолюбителей это звучит как “прикурить”. Ну и второй выход – это зарядить аккумулятор.

Когда я попал в такую ситуацию в первый раз, то понял, что мне срочно требуется зарядное устройство. Но у меня не было лишней тысячи рублей на покупку зарядного устройства. В интернете нашел очень простую схему и решил собрать зарядное устройство собственными силами.

Схему трансформатора я упростил. Обмотки со второй колонны обозначаются со штрихом.

F1 и F2 – это плавкие предохранители. F2 нужен для защиты от короткого замыкания на выходе цепи, а F1 – от превышении напряжения в сети.

Описание собранного устройства

Вот что у меня получилось. Выглядит так себе, но главное работает.

Трансформатор

Теперь обо всем по порядку. Силовой трансформатор марки ТС-160 или ТС-180 можно достать из старых черно-белых телевизоров “Рекорд”, но такового я не нашел и пошел в радиомагазин. Давайте разглядим его поближе.

Вот лепестки, куда паяются выводы обмоток трансформатора.

А вот здесь прямо на трансформаторе есть табличка, на каких лепестках какое напряжение. Это значит, что если подать на лепесток № 1 и 8 220 Вольт, то на лепестках №3 и 6 мы получим 33 Вольта и максимальную силу тока в нагрузку 0,33 Ампера и тд. Но нас больше всего интересуют обмотки №13 и 14. На них мы можем получить 6,55 Вольт и максимальную силу тока 7,5 Ампер.

Для того, чтобы заряжать аккумулятор нам как раз потребуется большая сила тока. Но напряжения то у нас не хватает… Аккумулятор выдает 12 Вольт, но для того, чтобы его зарядить, напряжение зарядки должно превышать напряжение аккумулятора. 6,55 Вольт здесь никак не сгодится. Зарядное устройство нам должно выдавать 13-16 Вольт . Поэтому, мы прибегаем к очень хитрому решению.

Как вы заметили, трансформатор состоит из двух колон. Каждая колонна дублирует другую колонну. Места, где выходят выводы обмоток пронумерованы. Для того, чтобы увеличить напряжение, нам нужно просто-напросто соединить две обмотки последовательно. Для этого соединяем обмотки 13 и 13′ и снимаем напряжение с обмоток 14 и 14′. 6,55 + 6,55 = 13,1 Вольт. Вот такое переменное напряжение мы получим.

Диодный мост

Для того, чтобы выпрямить переменное напряжение, мы используем диодный мост. Собираем диодный мост на мощных диодах, потому как через них будет проходить приличная сила тока. Для этого нам потребуются диоды Д242А или какие-нибудь другие, рассчитанные на ток от 5 Ампер. Через наши силовые диоды может течь прямой ток до 10 Ампер, что идеально подходит нашему самопальному заряднику.

Также можно отдельно купить диодный мост сразу готовым модулем. В самый раз подойдет диодный мост КВРС5010, который можно купить на Али по этой ссылке или в ближайшем радиомагазине

Полностью посаженный аккумулятор обладает низким напряжением. По мере зарядки напряжение на нем становится все больше и больше. Следовательно, у нас сила тока в цепи в самом начале зарядки будет очень большая, а потом пойдет на убыль. Согласно Закону Джоуля-Ленца, при большой силе тока будет происходить нагрев диодов. Поэтому, чтобы их не спалить, нужно отбирать от них тепло и рассеивать в окружающем пространстве. Для этого нам нужны радиаторы. В качестве радиатора я разобрал нерабочий компьютерный блок питания, разрезал на полоски жестянку и прикрутил к ним по диоду.

Амперметр

Для чего в схеме амперметр? Для того, чтобы контролировать процесс зарядки.

Не забудьте подключить амперметр последовательно нагрузке.

Когда аккумулятор полностью разряжен, он начинает жрать (слово “кушать” думаю здесь неуместно) ток. Жрет он порядка 4-5 Ампер. По мере зарядки он кушает все меньше и меньше силы тока. Поэтому, когда стрелка прибора покажет на 1 Ампер, то аккумулятор можно считать заряженным. Все гениально и просто :-).

Крокодилы

Выводим два крокодила для клемм аккумулятора с нашего зарядного устройства. При зарядке не путайте полярность. Лучше как-нибудь пометить их или взять разных цветов.

Если все правильно собрано, то на крокодилах мы должны увидеть вот такую форму сигнала (по идее верхушки должны быть сглажены, так как синусоида), но разве что-то предъявишь нашему провайдеру электричества ))). В первый раз видите что-то подобное? Бегом сюда!

Импульсы постоянного напряжения лучше заряжают аккумулятор, чем чистый постоянный ток. А как получить чистый постоянный ток из переменного описано в статье Как получить из переменного напряжения постоянное.

Заключение

Не поленитесь доработать свое устройство плавкими предохранителями. Номиналы предохранителей на схеме. Не проверяйте на искру напряжение на крокодилах зарядника, иначе лишитесь предохранителя.

Внимание! Схема данного ЗУ предназначена для быстрой зарядки вашего аккумулятора в критических случаях, когда надо срочно куда-то ехать через 2-3 часа. Не используйте ее для повседневного обращения, так как заряд идет при максимальное токе, что не самый лучший режим зарядки для вашего аккумулятора. При перезаряде начинет “кипеть” электролит и в окружающее пространство начнут выделяться ядовитые пары.

Тех, кого заинтересовала теория зарядных устройств (ЗУ), а также схемы нормальных ЗУ, то в обязательном порядке качаем эту книжку по этой ссылке. Ее можно назвать библией по зарядным устройствам.

Купить автомобильное зарядное устройство

На Алиэкспрессе есть действительно хорошие и толковые зарядки, которые намного легче обыкновенных трансформаторных зарядных устройств. Их цена в среднем от 1000 рублей.

Ссылка на основную публикацию