Как работают gps навигаторы

Экспедитура.Ру

Современный путешественник уже не мыслит себя без навигаторов. Раньше необходимые для навигации вещи представляли собой несколько предметов: компас, карты, и ориентирование все равно не было предельно точным. Сейчас все эти функции умещаются в одном-единственном приборе – навигаторе, о принципах работы которого мы сегодня и поговорим. Итак, как работает навигатор.

Навигатор – это прибор, который показывает ваше местоположение на карте, транслируемой на его экране. Делает он это при помощи спутников, с которыми постоянно находится «на связи». Навигатор – это приемник, и принимает он сигналы со спутников глобальной системы позиционирования (сокращенно по-английски GPS). Эта система состоит из 24 спутников, и была запущена американцами еще в конце прошлого века.

Как работает GPS навигатор

Суть работы вашего персонального «ориентировщика» заключается в следующем. Вокруг земной орбиты на высоте около 18 километров постоянно курсируют спутники, на борту которых расположены атомные часы, позволяющие с высочайшей точностью определять время. Траектории и скорость спутников жестко заданы, и постоянно мониторятся единой системой управления. Ваше местоположение вычисляется на основе вашего расстояния до 3-4 определенных спутников в конкретное время. Местоположение этих спутников в любую секунду доподлинно известно, поэтому их данные о расстоянии до вас позволяют точно определить ваше местоположение, а количество спутников в виде 3-4 штук позволяет определить точность вашего местоположения вплоть до 1-2 метров.

Но, разумеется, сам навигатор – не простой прибор, и состоит из довольно большого количества составных частей. Он принимает сигналы со спутников, и за обработку этих сигналов отвечает его внутренняя начинка, которая состоит из материнской платы, процессора, памяти, GPS-модуля, приемщика сигналов спутника, БИОСа, операционной системы, специальной оболочки, собственно навигационной программы и карт, которые закачаны в прибор. Давайте подробнее рассмотрим компоненты.

Из чего состоит навигатор

На материнскую плату устанавливается «железо» (процессор, джипиэс-модуль и т.д.). Она является как бы каркасом, сердцевиной и основой всего прибора.

«Материнка» соединяется шлейфом с экраном. Практически все современные экраны навигаторов – сенсорные, т.е. управление прибором идет путем нажатия клавиш на самом экране. Раньше практически все навигаторы имели TFT-экран, сегодня же почти все новинки выпускаются с экраном, сделанным по IPS-технологии. Данная технология уменьшает блики и увеличивает качество передачи картинки.

Разумеется, у навигатора есть свой аккумулятор. И если для автомобильных устройств он не так принципиален, так как идет постоянная подзарядка от автомобиля, то для туристических вариантов он жизненно необходим, так как режим отслеживания спутников очень энергозатратный. В будущих статьях мы разберем, как и какие выбирать туристические навигаторы, обращая внимание в том числе на емкость аккумулятора.

Всё описанное железо упаковывается в корпус, который для туристических навигаторов выполняется в защитном варианте – пыле- и влагонепроницаемом. Автомобильные навигаторы часто имеют обычный пластиковый корпус.

Выше мы разобрали лишь железную начинку наших помощников в ориентировании. Она абсолютно бесполезна, если не будет «мозгов» — программного обеспечения.

На навигаторы устанавливается операционная система, подобная той, что можно встретить на компьютерах и смартфонах. Самой популярной в последнее время становится Андроид, но достойную конкуренцию ему составляет Windows CE. Множество брендов-производителей используют эти операционки, но есть и такие, кто имеет собственные разработки – например, бренд Garmin. О правильном выборе навигатора мы поговорим в следующих статьях.

Теперь перейдем непосредственно к тем вещам, которые делают навигатор навигатором. Прежде всего, это сама навигационная программа – т.е. программа, которая обрабатывает сигналы позиционирования и предоставляет их на экран вашего прибора. Таких программ тоже множество, и даже гораздо больше, чем операционных систем, но самая популярная на сегодняшний день, особенно в России, — Navitel. Эта программа передает на экран прибора ваше местоположение. И остается завершающая часть – карты.

Если бы не было карт, то навигационная программа передавала бы просто ваши координаты на черном экране. Какой в этом смысл? Никакого. Поэтому карты являются важнейшей частью навигации, завершающим слоем, на котором и отображается в понятном вам виде информация о вашем местоположении. Карты привязаны к системе координат. Таким образом, когда навигационная программа показывает координаты вашего положения, то они просто накладываются на карту, которая также связана с системой координат. В итоге у современных приборов навигации точность составляет до одного метра.

Какой навигатор работает без интернета

В первую очередь, надо понять тот момент, что навигатор работает исключительно через свой GPS-модуль (либо через глонасс, но об этом мы поговорим чуть позже). Соответственно, ему не нужны ни вышки сотовой связи, ни интернет. Но, разумеется, в этом случае в него должны быть закачаны карты местности, по которой вы будете перемещаться. Это значит, что навигаторы работают абсолютно в любой точке земного шара, вне зависимости от того, как близко «цивилизация».

Существуют и такие типы навигаторов, которые работают только при наличии интернета, но там ориентирование и позиционирование ведется по вышкам сотовой связи либо в смешанном режиме, а карты местности подгружаются из интернета. Но даже такие навигаторы можно «заставить» работать офлайн – просто заранее загрузив карты и воспользовавшись встроенным модулем GPS в этих приборах. Как вы, наверное, поняли, речь идет прежде всего о сотовых телефонах и смартфонах, в которых есть джипиэс-модули и в которые можно установить навигационные программы. О выборе навигатора мы поговорим в следующих статьях этого блока.

GPS и Глонасс

Теперь давайте разберем еще один момент. До последнего времени слова «навигатор» и «gps-навигатор» значили одно и то же. Но ведь это не синонимы. GPS – это конкретная система позиционирования, разработанная американцами в прошлом веке. Собственно, именно так она и переводится. Но сегодня у GPS есть серьезнейший конкурент, и он отечественного производства – система Глонасс. Позиционирование и навигация осуществляются по тому же принципу, что и GPS, но уже – через наши спутники и наше оборудование. В каких-то вопросах Глонасс еще не достиг уровня GPS, но в целом является уже полноценным конкурентом. В России идет активное развитие нашего детища, и многие выпускаемые навигационные приборы имеют встроенный модуль Глонасса.

Как работает навигатор в различных условиях

Это очень важный вопрос, потому что навигатор непосредственно взаимодействует с сигналами спутников, и его работа чувствительно нарушается, когда нарушается этот контакт. Например, вы вряд ли успешно определите свое местоположение, находясь внутри большого помещения вдали от окон, и уж точно не сможете сделать этого в тоннеле или где-нибудь под землей. Нужно иметь это в виду при планировании собственных перемещений.

Для качественного определения координат навигатор должен соединиться хотя бы с 4 спутниками. Если небо закрыто тучами или мешают какие-то физические препятствия, то прибор может неточно определить ваше местоположение, а то и вовсе отказаться работать, требуя больше спутников.

Вот мы и разобрали основные принципы работы навигатора. Это достаточно сложный прибор, который сильно упрощает жизнь путешественнику и любому человеку, чья деятельность связана с перемещением по поверхности земли. В следующих статьях нашего блока читайте о том, какие выбрать навигаторы для разных условий, чем руководствоваться, и другую интересную информацию по теме навигации.

Принцип работы автомобильного навигатора

Современные разработки существенно облегчают жизнь автомобилистов. Работа одного небольшого прибора поможет сориентироваться на незнакомой местности, проложить оптимальный маршрут движения, рассчитать время в пути и миновать возникающие по дороге пробки. Речь идёт об автомобильном навигаторе. А ведь помимо основных функций в этом устройстве собран целый ряд дополнительных. Его можно использовать в качестве аудио- и видеоплеера, система Bluetooth объединит телефон и навигатор в систему громкой связи. Он оповестит о приближении АЗС, поста ГИБДД, камеры видеонаблюдения или других объектов.

Как работает автомобильный навигатор?

Автомобильный навигатор представляет собой устройство, состоящее из монитора, аккумуляторной батареи и печатной платы, объединяющей процессор, антенну, оперативную память. Принцип работы автомобильных навигаторов основан на обмене радиосигналами между приёмником и космическим спутником.

Основой всех подобных приборов служит система NAVSTAR GPS. Разработанная для нужд Министерства обороны США, впоследствии она была оборудована дополнительной частотой излучения сигнала для использования в гражданских целях. Систему GPS образуют двадцать четыре спутника плюс четыре наземные станции, контролирующие состояние спутников и корректирующие установленные в них часы.

Спутники расположены на своих орбитах таким образом, чтобы любой находящийся на поверхности Земли GPS-приёмник мог одновременно принимать сигналы минимум от четырёх из них. Такое условие необходимо для наиболее точного определения его положения в трёхмерной системе координат.

Непрерывный сигнал со спутников, содержащий информацию о параметрах их орбит, работе бортового оборудования и точном времени, посредством антенны попадает на процессор навигатора, совмещённый с дисководом и DVD с картой местности. Учитывая скорость прохождения сигнала между приёмником и каждым из спутников, процессор рассчитывает расстояние до них, определяет точные координаты автомобиля и переносит их на карту. Так же определяются координаты любой заданной точки для прокладывания к ней подходящего маршрута.

В 2011 году появились автомобильные приборы, работа которых помимо системы GPS опирается ещё и на российскую систему ГЛОНАСС. Точность таких моделей несколько выше.

Основные характеристики автомобильного навигатора

При выборе автомобильного навигатора рекомендуется учитывать следующие характеристики:

  • Объём памяти. Если модель не рассчитана на работу с дополнительной картой памяти, очень важен размер встроенной памяти, так как в неё записываются карты и программа навигации. Размер «оперативки» в различных моделях колеблется от 32 до 512 Мб.
  • Дисплей одна из важнейших характеристик. Качество получаемого изображения зависит от размера монитора и его разрешения. Диагональ современных приборов колеблется в диапазоне от 3,5 до 7 дюймов, наибольшее разрешение достигает 800х480 пикселей. Желательно наличие антибликового покрытия экрана.
  • Частота процессора. От неё зависит быстродействие всей системы. Недостаточная частота (менее 500 МГц) плохо отражается на работе с картами, имеющими повышенную детализацию.
  • Число каналов. Эта характеристика соответствует количеству спутников, с которым автомобильный навигатор может обмениваться информацией одновременно. Чем выше эта цифра, тем точнее показания прибора.
  • Чипсет. Выбор производителя данного компонента влияет на скорость и точность, с которыми работает автомобильный навигатор, его энергопотребление и экономичность.
  • Внешний вид. Сюда можно отнести способ крепления, возможность подключения внешней антенны и удобство подключения шнура питания к гнезду прикуривателя.

Помимо этого, при покупке автомобильного навигатора следует обращать внимание на технические характеристики, навигационную программу, ёмкость аккумулятора, ну и, конечно, его стоимость.

GPS навигатор. Виды и работа. Применение и карты. Особенности

GPS навигатор – это электронное устройство с экраном, предназначенное для получения спутникового сигнала с целью позиционирования своего местонахождения на дисплее. Он определяет точные координаты по широте и долготе, а также вычисляет высоту своего нахождения над уровнем моря. Основным предназначением прибора является прокладывание маршрутов с точки нахождения по требуемому адресу.

Как работает GPS навигатор

Принцип действия устройства основывается на том, что оно получает точные данные о своем местонахождении, на основании которых находит себя на карте местности, загруженной в его память. Прибор автоматически совмещает эту информацию и отображает на своем мониторе план улиц и дорог с обозначением своего местонахождения на них. При передвижении устройства данные на дисплее меняются. На карте отображается переход между улицами. Благодаря этому данная техника дает возможность держа ее при себе двигаться в любом направлении, исключая вероятность потерять ориентировку и заблудиться.

Что касается карт навигатора, то они загружаются в его память. Графические планы городов или целых регионов записываются, после чего устройство может в любой момент указать на плане где именно оно располагается. Чтобы проводить позиционирование осуществляется подключение к спутникам глобальной системы GPS. Они постоянно находятся на орбите Земли в большом количестве, поэтому почти с любой точки планеты имеется прямая видимость на них. Спутники транслируют сигналы, которые улавливает навигатор и по ним определяет свое текущее расположение.

Чтобы GPS навигатор мог определять широту, долготу и высоту, ему нужно получать сигнал сразу от 4 спутников. Именно поэтому все устройства без исключения поддерживают минимум 4 канала. При этом многие из них способны одновременно улавливать сразу до 9 сигналов. Это позволяет повысить точность и убрать вероятность кратковременной потери необходимых радиоволн в том случае, если один из четырех спутников находится не в прямой видимости, к примеру, обзор к нему закрывает многоэтажный дом.

Использование навигационных технологий дает возможность путешествовать без риска заехать в тупик, попасть на улицу с односторонним движением и ехать против направления основного потока автомобилей, а также позволит заранее узнать о множестве неприятностей и избежать их. При этом технические возможности прибора ограничены. Он не может полноценно воспринимать сигналы находясь в длинном туннеле, или в окружении высотных домов расположенных рядом друг к другом.

На что способны навигаторы

Эти устройства помимо выполнения своего прямого предназначения, а именно определения координат и прокладывания маршрута с визуальным сопровождением при движении на экране, могут поддерживать и другие функции.

GPS навигатор способен:
  • Проигрывать музыкальные и видеофайлы.
  • Отображать картинки и фото.
  • Давать голосовые подсказки.
  • Читать текстовые форматы.
  • С помощью специального FM передатчика транслировать звук на штатную магнитолу.
  • Давать громкую связь при разговоре по телефону без необходимости удерживать смартфон в руке.
  • Записывать видео как видеорегистратор.
  • Отображать изображение с камеры заднего вида.

Конечно, всеми этими функциями владеют только более дорогие навигаторы из высшего ценового сегмента. При этом самые базовые помимо составления маршрутов и определения своего местонахождения способны проигрывать видео и музыку. Отдельные устройства предусматривают специальный слот для установки обыкновенной SIM-карты, которую используют на смартфоне. Такие устройства могут используя 3G или 4G подключаться к интернету. Это позволяет просматривать видео прямо из сети, читать книги, новости и делать все, что и на планшете. Кроме этого, такие навигаторы могут загружать новые карты и обновлять старые без необходимости подключения к компьютеру.

Операционные системы

Обеспечением работы технического оснащения навигатора занимается операционная система. Именно она позволяет составлять маршруты, отвечает за передачу изображения и все другие операции, требующие расчета. Самые распространенные серийные модели данного оборудования действуют под управлением ОС:

Операционная система Windows СЕ была одной из первых успешных, но на данный момент уже уступает по своей функциональности и удобству. Ее ставят на бюджетные устройства, которые имеют небольшие показатели оперативной и встроенной памяти. Навигаторы под ее управлением зачастую немного зависают, обладают низкой скоростью переключения режимов, медленно увеличивают изображение и дольше строят маршрут.

Данные недостатки являются сравнительными, и не зная о более совершенной системе Android можно считать Windows более чем функциональной и хорошей операционной системой. Пользуясь навигатором под ее управлением, удастся применять все его функции, хотя это будет и не так удобно.

Операционная система Android уже более привычна для многих, поскольку ставится на множество смартфонов и планшетов. Она очень быстрая, к тому же поддерживает сотни приложений, способных в разы расширить функционал навигатора. Такая ОС гораздо легче для технического оснащения устройства, поэтому карты загружаются быстрее, изображение выглядит более качественным, к тому же в случае увеличения масштаба картинка не зависает.

Виды навигаторов по предназначению

Устройства позиционирования отличаются между собой. По предназначению их разделяют на следующие виды:
  • Автомобильные.
  • Пешеходные.
  • Универсальные.
  • Специализированные.
Автомобильные

GPS навигатор для машины является самым массивным. У него имеется крупный дисплей, что позволяет водителю с удобством просматривать карты, двигаясь при этом по автостраде. Прибор может монтироваться на панель приборов авто или на лобовое стекло. Его ставят таким образом, чтобы не закрывать обзор дорожного полотна. Обычно дисплей таких приборов превышает 5 дюймов. Конечно, чем он больше, тем комфортнее можно рассматривать мелкие детали на карте. При этом избыточно крупный навигатор закроет видимость, что небезопасно.

Автомобильные устройства разделяются на переносные и инсталлируемые. Съемные внешне напоминают обыкновенный планшет. В них имеется собственный встроенный аккумулятор, поэтому навигатор в любой момент можно снять и унести с собой. Убрав с панели приборов машины дорогое оборудование, минимизируя вероятность того, что на авто позарятся злоумышленники. Для обеспечения питания на протяжении большого периода времени в комплектации устройства предусматривается кабель, который с одной стороны подключается к прикуривателю, а вторым концом присоединяется к навигатору.

Инсталлируемые или встраиваемые навигаторы внешне имеют параметры крупной автомагнитолы. Они устанавливаются непосредственно в посадочное гнездо в автомобиле. Конечно, далеко не каждая машина предусматривает в своей конструкции столь много места для монтажа, что делает такие приборы не универсальными. У них не имеется собственной батареи питания. Они подключаются к бортовой сети машины.

Пешеходные

GPS навигатор для пеших прогулок обладает скромными габаритами, что обусловлено необходимостью максимально уменьшить массу прибора для его удобной переноски. Данные устройства зачастую очень маленькие, и даже выполняются в виде обыкновенных наручных часов. Их используют туристы, которые отправляются в путешествие в незнакомую местность, и стремятся исключить возможность заблудиться.

Такие навигаторы встречаются в городском варианте и для более активного отдыха. В обыкновенной базовой комплектации они применяются для путешествий в обустроенной местности, а в усиленном варианте имеют влаго- и пылезащищенный корпус, что дает возможность брать их с собой на прогулку по лесам и другим необжитым зонам.

Универсальный GPS навигатор

В продаже встречаются навигаторы, которые могут использоваться для пеших прогулок и для автомобильных поездок. Они имеют средние размеры, поэтому изображения на них вполне возможно просматривать за рулем. При этом доехав по предназначению. Возможно снять прибор и применять его для ориентирования в пеших прогулках.

Специализированные

Также в продаже можно встретить GPS навигатор, конструкция которого максимально адаптирована под определенные условия применения. Имеются специальные устройства для установки на велосипед и мотоцикл. У них более мощная конструкция для гашения вибрации, а также предусматривается надежное крепление, подсоединяемое к рулю. Обычно они имеют влагозащищенный корпус, что обусловлено их эксплуатацией во влажных погодных условиях. Существуют и специализированные навигаторы для установки на мелкие морские суда или рыбацкие лодки. Зачастую у них имеется функция эхолота для определения глубины на водоеме и поиска рыбы.

Выбор карт

Чтобы GPS навигатор работал корректно, необходимо чтобы в его память были загружены детальные карты. Даже если устройство является технически совершенным, и имеет большой ресурс встроенной памяти, а также мощный передатчик, оно будет не настолько хорошим если поставить на него плохую карту. Обычно на навигаторах можно встретить карты:

Сложно определить какая карта является безусловным лидером. Говоря упрощенным языком, определенный город может иметь планировку в картах нескольких разработчиков или даже у всех из них. При этом одни отображают только план, в то время как другие также могут указывать на нумерацию домов, что позволяет сделать адресный маршрут. Третьи навигационные карты еще и дают информацию об имеющихся пробках, сообщают о наличии впереди камеры для фиксации превышения скорости и т.д. В одних населенных пунктах лучше одни карты, в то время как для других они малопригодны. В связи с этим важно предварительно поинтересоваться – что лучше на интересующей местности.

Как работает GPS навигация

Практически каждый современный телефон уже имеет встроенный модуль GPS -приемника, с помощью которого имеется возможность достаточно точно определить свое местоположение на планете Земля. Для работы и точного определения местоположения GPS не требуется интернет и вышки мобильных сетей. Система может работать даже посреди пустыни вдалеке от цивилизации. Мы знаем, что это возможно благодаря спутникам, — но как именно это работает?

Основой системы GPS являются навигационные спутники, движущиеся вокруг Земли по 6 круговым орбитальным траекториям (по 4 спутника в каждой), на высоте 20180 км. Спутники GPS обращаются вокруг Земли за 12 часов, их вес на орбите составляет около 840 кг, размеры – 1.52 м. в ширину и 5.33 м. в длину, включая солнечные панели, вырабатывающие мощность 800 Ватт.

24 спутника обеспечивают 100 % работоспособность системы навигации GPS в любой точке земного шара. Максимальное возможное число одновременно работающих спутников в системе NAVSTAR ограничено числом 37. Практически всегда на орбите находится 32 спутника, 24 основных и 8 резервных на случай сбоев.

Поскольку известно, что каждый из спутников делает по два оборота вокруг планеты за сутки, то становиться нетрудно вычислить, что скорость их движения составляет приблизительно 14 000 км/ч. Само расположение спутников, так же как и наклон их орбит, отнюдь не случайно: они расположены так, чтобы из любой открытой точки планеты было видно хотя бы четыре спутника — именно таково минимальное количество, необходимое для определения местоположения объекта на Земле. Почему именно четыре и как это работает?

Чтобы измерить какое-то очень длинное расстояние, мы можем послать сигнал и замерить время, за которое он достигнет нужной точки либо отразится от нее и дойдет до нас снова (главное при этом точно знать скорость движения сигнала). Во втором случае время придется делить на два, поскольку сигнал прошел удвоенное расстояние. Этот способ носит название эхолокация, и спектр его применения весьма широк: начиная от изучения формы морского дна (здесь сигналом выступает ультразвук) и заканчивая радарами (сигнал — электромагнитные волны).

Проблема в том, что при использовании этого способа мы должны заранее знать, где находится приемник. В случае с системой GPS приемником сигнала являетесь именно вы, стоящий на Земле. Спутник не имеет никакого представления о вашем местоположении, он не знает, где вы, и никогда не узнает, поэтому отправляет сигнал сразу на всю поверхность планеты под ним. В этом сигнале он кодирует информацию о том, где расположен сам, а также в какое время по его собственным часам сигнал был отправлен, и на этом его работа заканчивается.

GPS -модуль у вас в руках получил координаты спутника и информацию о времени отправки сигнала. Программа в вашем телефоне умножает скорость распространения сигнала (то есть скорость света) на разницу между временем получения и временем отправки, высчитывая таким образом расстояние до каждого спутника. Если бы часы модуля были в точности синхронизированы с часами всех сателлитов, то понадобилось бы еще два спутника, чтобы определить местоположение с помощью так называемой триангуляции.

Чтобы понять принцип действия триангуляции, давайте на секунду перейдем в двухмерное пространство. Представьте себе две точки на плоскости, расположенные на известном расстоянии друг от друга, допустим 5 метров. Вы также знаете, что какая-то новая точка находится, в свою очередь, на известных расстояниях от первых двух — например 3 и 4 метра соответственно. Чтобы найти эту новую точку, вы можете провести две окружности с радиусами 3 и 4 метра и центрами в первой и второй точках соответственно. Две полученные окружности пересекутся ровно в двух точках, одна из которых и будет искомой.

Вернемся в трехмерное пространство. Теперь нам уже нужны три опорные точки, которыми являются наши спутники, и «чертить» вокруг них мы будем не окружности, а сферы. Все три сферы сразу в общем случае будут иметь две точки пересечения, но одна из них находится «над» местом расположения спутников, очень высоко в космосе — она нам явно не нужна. А вот вторая — это как раз ваше местоположение.

Для измерения местоположения в пространстве необходимо знать точное время и иметь точный инструмент для его измерения.

Реальная задача осложняется тем обстоятельством, что время на часах вашего телефона не совпадает с тем, что показывают часы спутников, и ваши часы являются на несколько порядков менее точными. Вообще говоря, время создает несколько дополнительных сложностей в решении этой проблемы. Так, например, спутники подвержены эффектам релятивистского и гравитационного искажения времени. На самом деле скорость хода часов, согласно теории относительности, зависит в том числе от силы гравитации в той точке, где эти часы расположены, а также от скорости их движения.

На высоте 20 000 километров над Землей гравитация достаточно слаба, а спутники летают, как мы уже разобрались, довольно быстро. Из-за суммы этих эффектов часы приходится корректировать в общей сложности на 38 миллисекунд за сутки. Если кажется, что это мало, напомню, что электромагнитный сигнал, движущийся со скоростью света, пройдет за это время приблизительно 11 000 км — примерно такой и может быть погрешность при определении координат.

Вторая проблема — точность самих часов. При указанных скоростях сигналов каждая миллионная доля секунды, измеренная с погрешностью, может спровоцировать большие ошибки. Из-за этого спутники старого формата позволяют определить местоположение не очень точно и могут «обмануть» на целых 10 метров. Начиная с 2010-го на замену старым запускают новые спутники, оснащенные атомными часами, и их погрешность уменьшилась до 1 метра.

Другой путь решения проблемы — специальные наземные станции коррекции. Они используются на территории некоторых стран и принцип их работы таков: принимая данные о расположении того или иного объекта, они корректируют их, и в результате пользователь гаджета получает более достоверную информацию о собственном местоположении.

Чем больше источников сигнала, тем точнее результат измерения, вот почему в мегаполисе ориентироваться по навигатору будет проще, чем в пустыне.

Однако атомные часы – устройство громоздкое и дорогостоящее, поэтому, чтобы решить проблему времени приемника, нужен еще один спутник. Он тоже передает информацию о своем местоположении и моменте отправки сигнала. И теперь наше пространство становится не трех-, а четырехмерным. Неизвестными являются широта, долгота, высота и время приемника в момент отправки сигналов. Положение в этих четырех измерениях нам и нужно определить, для чего по аналогии с двухмерным и трехмерным пространствами нам нужны именно четыре спутника.

Конечно же, в реальности хорошо, когда удается «поймать» сигнал от большего числа источников, и в крупных городах и населенных районах с этим проблемы нет: можно легко увидеть одновременно десяток сателлитов, которые обеспечат достаточно высокую для бытового использования точность.

Однако начальный поиск спутников тоже не самая простая задача. В старых аппаратах устройству могло потребоваться немало времени, вплоть до нескольких минут, чтобы уловить и разобрать сигнал от нужного числа космических объектов. Тогда это называлось «холодный старт», и для того, чтобы ускорить процесс, придумали получать данные о текущем местоположении небесных тел из интернета. Но при перемещении приемника на большое расстояние (десятки километров) или при очень долгом бездействии «холодный старт» приходилось производить заново. В современных устройствах модуль периодически включается сам, обновляя информацию, поэтому подобной проблемы больше нет.

Кстати говоря, до 2000 года точность для гражданских лиц была искусственно занижена, и узнать свое местоположение позволялось не ближе, чем в 100 метрах от реального. Поскольку GPS создавалась, финансируется и поддерживается министерством обороны США , военные хотели иметь определенное преимущество. С развитием и все более активным внедрением технологии в жизнь гражданского населения это искусственное ограничение было убрано.

Спутник не получает данных ни о каких GPS -устройствах на поверхности Земли и в воздушном пространстве, поэтому услуга бесплатная. Мы просто не сможем узнать, кто конкретно ей пользуется. Выходит, рецепт решения общечеловеческой проблемы под кодовым названием «А где я нахожусь?» чрезвычайно прост: односторонняя связь и нехитрые математические расчеты.

Сегодня область применения системы глобального позиционирования GPS достаточно обширна. Всё чаще GPS -приемники встраивают в мобильные телефоны и коммуникаторы, в автомобили, часы и даже в собачьи ошейники. Люди привыкают к такому благу как GPS навигация, и пройдет совсем немного времени как они уже не смогут обойтись без нее. Именно поэтому стоит сказать пару слов о недостатках GPS .

Недостатками GPS навигации является то, что при определенных условиях сигнал может не доходить до GPS -приемника, поэтому практически невозможно определить свое точное местонахождение в глубине квартиры внутри железобетонного здания, в подвале или в тоннеле.

Рабочая частота GPS находится в дециметровом диапазоне радиоволн, поэтому уровень приема сигнала от спутников может ухудшиться под плотной листвой деревьев, в районах с плотной городской застройкой или из-за большой облачности, а это скажется на точности позиционирования.

Магнитные бури и наземные радиоисточники тоже способны помешать нормальному приему сигналов GPS .

Карты, предназначенные для GPS навигации, быстро устаревают и могут быть не точными, поэтому нужно верить не только данным GPS -приемника, но и своим собственным глазам.

Особенно стоит отметить, что работа глобальной системы навигации GPS полностью зависима от министерства обороны США и нельзя быть уверенным, что в любой момент времени США не включит помеху (SA – selective availability) или вообще полностью отключит гражданский сектор GPS как в отдельно взятом регионе, так и вообще. Прецеденты уже были.

У системы GPS есть менее популярная и известная альтернатива в виде навигационных систем ГЛОНАСС (Россия) и Galileo (ЕС), и каждая из этих систем стремится получить широкое распространение.

Система спутниковой навигации GPS – принцип, схема, применение

Спутниковая навигация GPS давно уже является стандартом для создания систем позиционирования и активно применяется в различных трекерах и навигаторах. В проектах Arduino GPS интегрируется с помощью различных модулей, не требующих знания теоретических основ. Но настоящему инженеру должно быть интересно разобраться со принципом и схемой работы GPS, чтобы лучше понимать возможности и ограничения этой технологии.

Схема работы GPS

GPS – это спутниковая навигационная система, разработанная Министерством обороны США, которая определяет точные координаты и время. Работает в любой точке Земли в любых погодных условиях. GPS состоит из трех частей – спутников, станций на Земле и приемников сигнала.

История GPS

Идея создания спутниковой навигационной системы зародилась еще в 50-е годы прошлого столетия. Американская группа ученых, наблюдающая за запуском советских спутников, заметила, что при приближении спутника частота сигнала увеличивается и уменьшается при его отдалении. Это позволило понять, что возможно измерить положение и скорость спутника, зная свои координаты на Земле, и наоборот. Огромную роль в развитии навигационной системы сыграл запуск спутников на низкую околоземную орбиту. А в 1973 году была создана программа «DNSS» («NavStar»), по этой программе спутники запускались на среднюю околоземную орбиту. Название GPS программа получила в том же 1973 году.

Система GPS на данный момент используется не только в военной области, но и в гражданских целях. Сфер применения GPS много:

  • Мобильная связь;
  • Тектоника плит – происходит слежение за колебаниями плит;
  • Определение сейсмической активности;
  • Спутниковое отслеживание транспорта – можно проводить мониторинг за положением, скоростью транспорта и контролировать их движение;
  • Геодезия – определение точных границ земельных участков;
  • Картография;
  • Навигация;
  • Игры, геотегинт и прочие развлекательные области.

Важнейшим недостатком системы можно считать невозможность получения сигнала при определенных условиях. Рабочие частоты GPS лежат в дециметровом диапазоне волн. Это приводит к тому, что уровень сигнала может снизиться из-за высокой облачности, плотной листвы деревьев. Радиоисточники, глушилки, а в редких случаях даже магнитные бури также могут мешать нормальной передаче сигнала. Точность определения данных будет ухудшаться в приполярных районах, так как спутники невысоко поднимаются над Землей.

Навигация без GPS

Основным конкурентом GPS является российская система ГЛОНАСС (глобальная навигационная спутниковая система). Свою полноценную работу система начала с 2010 года, попытки активно использовать ее предпринимались с 1995 года. Существует несколько отличий между двумя системами:

  • Разные кодировки – американцы используют CDMA, для российской системы используется FDMA;
  • Разные габариты устройств – ГЛОНАСС использует более сложную модель, поэтому повышается энергопотребление и размеры устройств;
  • Расстановка и движение спутников на орбите – российская система обеспечивает более широкий охват территории и более точное определение координат и времени.
  • Срок службы спутников – американские спутники делаются более качественными, поэтому они служат дольше.

Помимо ГЛОНАСС и GPS существуют и другие менее популярные навигационные системы – европейский Galileo и китайский Beidou.

Описание GPS

Принцип работы GPS

Работает система GPS следующим образом – приемник сигнала измеряет задержку распространения сигнала от спутника до приемника. Из полученного сигнала приемник получает данные о местонахождении спутника. Для определения расстояния от спутника до приемника задержка сигнала умножается на скорость света.

С точки зрения геометрии работу навигационной системы можно проиллюстрировать так: несколько сфер, в середине которых находятся спутники, пересекаются и в них находится пользователь. Радиус каждой из сфер соответственно равен расстоянию до этого видимого спутника. Сигналы от трех спутников позволяют получить данные о широте и долготе, четвертый спутник дает информацию о высоте объекта над поверхностью. Полученные значения можно свести в систему уравнений, из которых можно найти координату пользователя. Таким образом, для получения точного местоположения необходимо провести 4 измерения дальностей до спутника (если исключить неправдоподобные результаты, достаточно трех измерений).

Поправки в полученные уравнения вносит расхождение между расчетным и фактическим положением спутника. Погрешность, которая возникает в результате этого, называется эфемеридной и составляет от 1 до 5 метров. Также свой вклад вносят интерференция, атмосферное давление, влажность, температура, влияние ионосферы и атмосферы. Суммарно совокупность всех ошибок может довести погрешность до 100 метров. Некоторые ошибки можно устранить математически.

Чтобы уменьшить все погрешности, используют дифференциальный режим GPS. В нем приемник получает по радиоканалу все необходимые поправки к координатам от базовой станции. Итоговая точность измерения достигает 1-5 метров. При дифференциальном режиме существует 2 метода корректировки полученных данных – это коррекция самих координат и коррекция навигационных параметров. Первый метод использовать неудобно, так как все пользователи должны работать по одним и тем же спутникам. Во втором случае значительно увеличивается сложность самой аппаратуры для определения местоположения.

Существует новый класс систем, который увеличивает точность измерения до 1 см. Огромное влияние на точность оказывает угол между направлениями на спутники. При большом угле местоположение будет определяться с большей точностью.

Точность измерения может быть искусственно снижена Министерством обороны США. Для этого на устройствах навигации устанавливается специальный режим S/A – ограниченный доступ. Режим разработан в военных целях, чтобы не дать противнику преимущества в определении точных координат. С мая 2000 года режим ограниченного доступа был отменен.

Все источники ошибок можно разделить на несколько групп:

  • Погрешность в вычислении орбит;
  • Ошибки, связанные с приемником;
  • Ошибки, связанные с многократным отражением сигнала от препятствий;
  • Ионосфера, тропосферные задержки сигнала;
  • Геометрия расположения спутников.

Основные характеристики

В систему GPS входит 24 искусственных спутника Земли, сеть наземных станций слежения и навигационные приемники. Станции наблюдения требуются для определения и контроля параметров орбит, вычисления баллистических характеристик, регулировка отклонения от траекторий движения, контроль аппаратуры на бору космических аппаратов.

Характеристики навигационных систем GPS:

  • Количество спутников – 26, 21 основной, 5 запасных;
  • Количество орбитальных плоскостей – 6;
  • Высота орбиты – 20000 км;
  • Срок эксплуатации спутников – 7,5 лет;
  • Рабочие частоты – L1=1575,42 МГц; L2=12275,6МГц, мощность 50 Вт и 8 Вт соответственно;
  • Надежность навигационного определения – 95%.

Навигационные приемники бывают нескольких типов – портативные, стационарные и авиационные. Приемники также характеризуются рядом параметров:

  • Количество каналов – в современных приемников используется от 12 до 20 каналов;
  • Тип антенны;
  • Наличие картографической поддержки;
  • Тип дисплея;
  • Дополнительные функции;
  • Различные технические характеристики – материалы, прочность, защита от влаги, чувствительность, объем памяти и другие.

Принцип действия самого навигатора – в первую очередь устройство пытается связаться с навигационным спутником. Как только связь будет установлена, происходит передача альманаха, то есть информации об орбитах спутников, находящихся в рамках одной навигационной системы. Связи с одним только спутником недостаточно для получения точного местоположения, поэтому оставшиеся спутники передают навигатору свои эфемериды, необходимые для определения отклонений, коэффициентов возмущения и других параметров.

Холодный, теплый и горячий старт GPS навигатора

Включив навигатор впервые или после долгого перерыва, начинается долгое ожидание для получения данных. Долгое время ожидания связано с тем, что в памяти навигатора отсутствуют либо устарели альманах и эфемериды, поэтому устройство должно выполнить ряд действий по получению или обновлению данных. Время ожидания, или так называемое время холодного старта, зависит от различных показателей – качество приемника, состояние атмосферы, шумы, количество спутников в зоне видимости.

Чтобы начать свою работу, навигатор должен:

  • Найти спутник и установить с ним связь;
  • Получить альманах и сохранить его в памяти;
  • Получить эфемериды от спутника и сохранить их;
  • Найти еще три спутника и установить с ними связь, получить от них эфемериды;
  • Вычислить координаты при помощи эфемерид и местоположения спутников.

Только пройдя весь этот цикл, устройство начнет работать. Такой запуск и называется холодным стартом.

Горячий старт значительно отличается от холодного. В памяти навигатора уже имеется актуальный на данный момент альманах и эфемериды. Данные для альманаха действительны в течение 30 дней, эфемерид – в течение 30 минут. Из этого следует, что устройство выключалось на непродолжительное время. При горячем старте алгоритм будет проще – устройство устанавливает связь со спутником, при необходимости обновляет эфемериды и вычисляет местоположение.

Существует теплый старт – в этом случае альманах является актуальным, а эфемериды нужно обновить. Времени на это затрачивается немного больше, чем на горячий старт, но значительно меньше, чем на холодный.

Ограничения на покупку и использование самодельных модулей GPS

Российское законодательство требует от производителей уменьшать точность определения приемников. Работать с незагрубленной точностью может производиться только при наличии у пользователя специализированной лицензии.

Под запретом в Российской Федерации находятся специальные технические средства, предназначенные для негласного получения информации (СТС НПИ). К таковым относятся GPS трекеры, которые используются для негласного контроля над перемещением транспорта и прочих объектов. Основной признак незаконного технического средства – его скрытность. Поэтому перед приобретением устройства нужно внимательно изучить его характеристики, внешний вид, на наличие скрытых функций, а также просмотреть необходимые сертификаты соответствия.

Также важно, в каком виде продается устройство. В разобранном виде прибор может не относиться к СТС НПИ. Но при сборе готовое устройство уже может относиться к запрещенным.

Ссылка на основную публикацию